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Abstract In this work, the authors implemented two dimensional Laplace transform to
solve non - homogeneous sub - ballistic fractional PDE and homogeneous systems of time
fractional heat equations which is a generalization to the problem of thermal effects on fluid
flow and also the problem of the effect of a uniform overburden on the passage of a thermal
wave and the temperatures in the underlying rock. Constructive examples are also provided.
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1. Introduction and Preliminaries

The problem related to partial differential equation commonly can be
solved by using a special integral transform, thus many authors solved the
boundary value problems by using single Laplace transform. Furthermore, two
dimensional Laplace transforms in the classical sense for solving linear second
order partial differential equations were used by Ditkin [11], Brychkov [13]. The
Laplace transform, it can be fairly said, stands first in importance among all
integral transforms for which there are many specific examples in which other
transforms prove more expedient. The Laplace transform is the most powerful in
dealing with both initial boundary value problems and transforms [1-9]. The two
dimensional Laplace transforms is a powerful tool in applied mathematics and
engineering.

The fractional derivative is one of the most interdisciplinary fields of
mathematics, with many applications in physics and engineering and deals with
extensions of derivatives and integrals to non-integer orders. It represents a
powerful tool in applied mathematics to study a myriad of problems from different
fields of science and engineering, with many breakthrough results found in
mathematical physics, finance, hydrology, biophysics, thermodynamics, control
theory, statistical mechanics, astrophysics, cosmology and bioengineering [13, 14,
15, 16]. Several definitions have been proposed for a fractional derivative. We deal
with Caputo fractional derivatives only. In this section, we present the definition of
this derivative.
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Let f be an arbitrary integrable function. By ,1“f (t) we denote the
fractional integral of f with order & >0 on [0,t ] defined as

1 f
2t )= [ )
I(a) 72 (t-x)
This integral is sometimes called the left-sided fractional integral.
For an arbitrary real number & >0 (n—1<a<n, neN) the Caputo

fractional derivatives are defined as

(n)
D A (1) = 1 O ()= [0
'(n—a)’a (t—x)*""

The Caputo fractional derivative is a regularization in the time origin for
the Riemann-Liouville fractional derivative by incorporating the relevant initial
conditions. The major utility of the Caputo fractional derivative is caused by the
treatment of differential equations of the fractional order for physical applications,
where the initial conditions are usually expressed in terms of a given function and
its derivatives of integer (not fractional order), even if the governing equation is of
fractional order. If care is taken, the results obtained using the Caputo formulation
can be recast to the Riemann-Liouville version and vice versa.

Let f (t) be afunction of t specified for t > 0. Then the Laplace

transform of function f (t) is defined by
L{f (t)}:j:e-stf (t)dt =F(s).
If L{f (t)}=F(s),then L"{ F(s)} is given by

f(t)=2i7[ij:*i:e“F(s)ds, (t>0),

where F(s) is analytic in the region Re(s)>c and f (t)=0 fort <O.

This result is called complex inversion formula. It is also known as Bromwich's
integral formula. When n —1<a <n, we get the following [14,15]

n-1
L{%Dt“f (t)}=s“ F(s)—z se 1 Q).
k=0
Example 1.1. Let us solve the following fractional Volterra equation of

convolution type. The Laplace transform provides a useful technique for the
solution of such equations.

A1, (2JBE=2) D “p(e) ¢ =(%]2 3.@JR), #(0)=0.

Solution. Upon taking the Laplace transform of the given equation, we obtain
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ﬂ

(— )7 D) =—,

solving the above equation, Ieads to

(D
@ I

w

2p
D(s) =

L
ﬂ/ S v+a

By applying the inverse Laplace transform, we get the formal solution

v+a-1

¢()——(—j C 3,02,

2p

Lemma 1.1 Let us consider the following system of fractional singular integro -
differential equations of convolution-type with the Bessel kernel:

°Dy’ g,(x) = f1<x)—z(f)<%t>2Jv(zx/a(x—t» o, ()dt,

D g, () = £,(x) M(fj(%t)zav(z«/a(x—t)) o, (t)dt,

where g,(0)=9,(0)=0,v>-1,0<|4/<1 and f,(x),f,(x) are known

functions.
Then the above system has the following formal solutions

(a+v+)+
0,00 = z< 2K (X e . (\ZKA0CD) i)t
( )

(2k+1) (oc+v+1)+g

DAL j ((2k+1)a i 2 et s AR D) T 06

X k(a+v+1)+

+ f (O)Z( A o) ZJZk(awﬂ)m(Z\/ZkaX)

(2k-+1) (oz+v+1)+g

~f <0>Z< DD 23 sy (AR(ZKHDX).
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(2k+l)(a+ +1)+7

9,() = Z( YA | ((2k+;)a 2 et 2 AGKHD(x-1)) Fi(Dc

X — t k(a+v+1)+

+Z( .[ 2k(a+v+l)+a (2V2ka(x t )f (t)dt
. @), +1)+7
(2k+1) 2
+f(0)Z( 1)k A2+ ((2k+1)a) 3 akestyasvstyra (2NRCKFDX)
kd K, X (a+v+l)+
+ fz(O)kZ;‘(—ﬂz) (ﬁ) 2 2k(a+v+1)+a(2\/2kax)

Proof. In order to solve the above system, by introducing
g(x)=09,(x)+19,(x),f (x)=Ff,(x)+if,(X) we can rewrite the above
system of partial fractional integro - differential equations in the following form

D, 900 = 100+ Al (=923, (2al—D) g0 dt
0

where g(0)=0,v>-1,a>0,0<||<1.

By applying the Laplace transform of both sides of the above equation term - wise
we obtain

"‘G(s)—F(s)+/1| (_ )G( S)
1 1
G(s) = ] - exp(_?a) F(s) = Sa{l_#i F(s)
s —Al Svﬁ Sa+v+l exp(g)
O TN . (20)"
g g(; s(a+v+l)k exp(%) B SF(S); s(a+v+l)k+a+l exp(k?a)

Now, using the fact that

o Fl(ﬂ )} ¢ )23 (2Vax), () = (=D, ()" = (-1

upon taking the inverse Laplace transform of the above term, yields
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(a+v+l)k+a
g(x) = j Z(ﬂ,l)( ) 2 Jaarankea @yka(-D) /(D) dt
OKO
(a+v+D)k+a

TOXENC) 2 I @)

Finally, by taking the real and imaginary part of the above relation, we
finally obtain the solutions of the system in the following forms

X — tk(a+v+l)+
g,(0) = Z( j L 2 vty (N2KRCD) (D)0

(2k+1) (az+v+l)+g

N [Gnd 7 3 g tya CAEKTDOCD) 0k

X k(a+v+l)+

" f1(0)§(—,12) (o) 2 ) oty (2NZKEX)

(2k+1)

(a+v +l)+—
(2k+1) 2 [a(2k +Dx
- f (O)Z( 1) A ((2k l)a) (2k+l)(a+v+l)+a(2 a(2k +1)x)
similarly we get
2k 41 (2k+l)(a+v+1)+g
9,00 = () A% f (G +1)a 23 sy GREK + DX D)0

X t k (a+v+1)+

+Z( _a)k j( Tk (s snye (22K D)) ()l
(2k +1) (0{+v+l)+g
(2k +1) 2 2 ’
+f (O)Z( 1) AT ((Zk 1)a) J(2k+1)(06+v+1)+a(2 a(2k +1)x )
© K, X k(a+v+1)+
+f2(0)§(_/12) (ﬁ) 2 2k(a+v+l)+a (2v/2kax ).

Definition 1.1. Let f (x,y ) be a continuous function defined on the square
[0,00) x [0,0), which is of exponential order, that is, for some 4,& e R”

LGP

SUp AX+&y

x,y>0 €
Then the two dimensional Laplace transform of f (x ,y ) is defined as

LAf O y)r=[ [ e f (x,y)dxdy =F(p.q).
If L{f (x,y)}=F(p.,q),then L;"{ F(p,q)} isgiven by
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1 otiw potio o
f(x,y)= | ] e**iF(p,q)dpda.

o—i©

(27i)*

Definition 1.2. The one-dimensional convolution of f (x ) and g(x ) isas

(f *g)) =] f(x-2)g(z)az,

also, the two-dimensional convolution of f (x ,y ) and g(X,y) is given by

(f **g)(x,y)=[ [ f(x=&y-n)g(&n)dndé

2. Evaluation of integrals and solution to fractional PDE. by means of the two

dimensional Laplace transform

In this section, we evaluate integrals that their evaluations are not an easy
task. But, by means of two dimensional Laplace transform we can evaluate these

integrals.

Lemma 2.1. The following integral relations hold true

a)|=3j3 ! bei( 2 Yda =J,(2),

770 tana Jtana

3ri

where bei (z ) =Im(J,(ze * )) and

2 .costdt &
=Z

b)l——j bei (\/_)

Proof. (@) : By change of variable t =tan «, we get

(n')3

2I —bei(—
o t(t? +1)

L(pq’{tbel(Z } )}——
q +*
let us assume that

1(X,y)= j ﬁ(tbei(z /Xt—y)Jdt,

N

Using the fact that

then, we get

2 ydt.
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2 w dt 1 1 1
(p.9) =
szq{l(x,y)}—ﬂpzqzjo ) 2 1 1+pq a )
(1 +1)(t +p2q2) p*a

the inverse two dimensional Laplace transform of the above relation yields

L(x,y)=3,(2Jxy),

I =1(1,1)=J,(2).
Proof (b ) : Similarly, we obtain

which concludes that

Z (=1)"
(nh*
Theorem 2.1. (Sub Ballistic Fractlonal PDE) The following non - homogenous
partial fractional differential equation [17].

‘DIU(x,t)+SDfu(x,t)=1 : x,t>0
where 0 < e, # <1 with the boundary conditions u(0,t ) =u(x,0) =0,
we get the following formal solution

B © (_1)n X—natn+1
U= T T 2)

Proof. At first, we assume that 0 < o <1 and0 < S <1, then applying the two-
dimensional Laplace transform term wise to P.D.E, yields

. 1
p“U(p,a)+a”U(p,q)=—,
Pq
when L {u(x,t)}=U(p.q). Therefore

1 1 npg-1
U (p!q): a = Z ( (2+l?a+l '

B
+q ) a+lq(l+q ) n=0

The inverse two-dimensional Laplace transform y|elds

R
u(x ,t)_é r(na+a+1)T(1-np)

For the special case o = =0.5, we have

2 X
u(x ’”‘ﬁ(ﬁ_m)’

and the figure is shown as follows.
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alpha =beta=0.5

20 138 1 = - L
© 14 12 g
“ 1008 06 g
4 02

t

Note that when O <« <1 and £ =1, by using the two-dimensional
Laplace transform, we may calculate U (p,q) as follows,

1 1 © _1n na-1
Upa)= iy S A
paip  +q pq2(1+F;) n=0 q

so that

0 _1\n —Na ¢ n+l
o (l-na)l(n+2)
For =1 and £ =0.5, we have the following

alpha=1 , beta=0.5
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In special case, let us take ¢ = f# =1, the Laplace transform with respect to t gives

1
Ux(x,q)+qU(x,q)=a,
therefore
1 .
U (x ,Q)Zq—z(l—e )

At this point, the inverse Laplace transform yields

t x>t
u(x,t)=t—(t—x )H(t—x):{X

DX <t

alpha = beta=1

3. Solving system of time fractional heat equations.

In this section, the authors considered certain homogeneous system of time
fractional heat equations which is a generalization to the problem of thermal effects
on fluid flow and hydraulic fracturing from well bores and cavities in low
permeability formations [12]. In this work, only the Laplace transformation is
considered as it is easily understood and being popular among engineers and
scientists.

Problem3.1 Solving the homogeneous systems of time fractional heat equations
[12]
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o%u
C o 2
D%u =k
0t ox?
2
°Dev =k? SXVZ +22°D%u

where 0 <a <1, 0<X <oo, t >0 with the boundary conditions,
u(0,t)=1, lim [u(x,t)|<oo ,v,(0,t)=-1, lim |v(x,t)|<oo

and the initial conditions are u(x ,0) =v (x ,0)=0.
Solution: Application of the Laplace transform to the first equation and the initial
conditions, yields

s“U(x, s)=k*U,_ (X, s).
Now, the boundary conditions give

a X n
@ (_E) 1
U(x,s)=-e * => —
n=0 n! -
S 2
that leads to
X\n na
) (_E) t_7
u(x, t)=>

= n! na .’
oo )

The special case o =1 gives
X

Zkﬁ)'

Similarly, applying the Laplace transform of the second equation and using the
initial conditions, we arrive at

u(x, t)=erfc(

5
—=X
V, (X, 8)—s“V(X,s)=-s""e ¥ .
Using the boundary conditions, solution of the above differential equation is as

a

2 2 82
V(x,s)= /1—+ K + XA e k.

a, 1-%
s?2 2ks 2
The Laplace transform inversion formula leads to the following formal solution

1

nNa a nha a na

(- Xy 2 272 22
o \ T 2 2 2 2 2 2 2
V=3 kK’ | A2t t A2x ot

1| 2 n +k na. n
o Nt 2 N9y pq @ Ny 2k pg @ Na
2 27 2 27 2
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For the special case ¢ =1, we obtain

A X ft 22X ) aen

v(x, t)=(E=—x)erfe(———=)+| 2k, [—+——Z— e *.
(0= (Zkﬁ)[ 7 2k1/7th

We have shown the solutions in the following figures for « =1,0.5 and
A=k =1

2

slpha=1 alpha = 0/5

' 13 20
4 02 04 056 08 10 1214 16

1

alpha = 0/5

}
1703 04 06 02 10 1214
1

4. ffect of a uniform overburden on the passage of a thermal wave

In this section, the authors considered certain homogeneous time fractional heat
equations which is a generalization of the problem of the effect of a uniform
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overburden on the passage of a thermal wave and the temperatures in the
underlying rock studied by D.S. Parasnis [16].
Problem 4.1. Let us find the fractional heat flow in a two-layer earth [12]

2
th“ul(x,t):q% :0<x<h, t>0,

2
th”‘uz(x,t):azauz—(X’t) th<x, t>0,

ox’

where O<a <1 and a, denotes the diffusivity of the layer, u, denotes the
temperature and X denotes the distance down from the surface. At the earth's
surface, there is a diurnal cycle u,(0,t)=T,sinwt, while at the interface

between the two layers,

ou,(h,t ou,(h,t
u(h,t)=u,(h,t) , k 16()( ):k2 a(x )

where Kk, denotes the thermal conductivity. We also require that

lim|u,(x ,t)| <oo. The initial conditions are u,(x ,0) =u,(x,0)=0.
X —>o0

Solution: Taking the Laplace transform of two equations, we get

M_iui(x ,$)=0 (i =1,2).
d x &

Therefore, using the initial and boundary conditions, we get the following
pexp(—2h /
exp(x f
1+ pgexp(-2h /
31

U,(x, s)_

Sﬂ
T exp(—x /g)
+
SZ+W2 g%
1+ Bexp(-2h g)

and
ool 5 |
U,(X,s)= TW(l—i—ﬂ) 2 &,
s 1+ pexp(— Zh\/i)
&
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k Ja -k «f
where f=—Y_%2 2 % Toinvert U, and U ,, we observe that
klﬁ/a +k, /

1

Z( 1)" B" exp(— 2nh\/7)

1+ Bexp(— ZhF) "o %
a

ﬂeXp(—Zh\/g)

&

Then we get the foIIowing relations

Vil S)_ Zi( 1) ﬂ"“exp{ (2nh+2h—x)E}
v
5 +WzZ( A" exp{ (2nh+x)E}

and

U,(x ,s):TOSWZEF—l\;f)g (-B)" exp{—[(Zn +1)h+(h—x)\/§—2}\/§}

We can show (by using convolution) that the inverse of

F(2,5)= (5 )exp(- z[s*)

if <1.

is as
1 ; Z

f(z.t)=_[ sin(a(t-7)W (-2,0;-~)dz.
t 2 5

Where W (.,.) stands for the Wright function. The final solutions are

2nh+2h-x 2nh+x

LG =T 3 (-1 A ETEEE 04T 3 ) 1

and

) (2n+1)h+(h—x)\/§
U, (X, 1) =Ty (1+8) 2 (= B)" f( =, 1).
% =
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5. Conclusion

In this paper, analytic solution of the space - time fractional sub - ballistic
and heat equations are derived using the integral transform method. The authors
implemented two dimensional Laplace transform to solve non -homogeneous sub
ballistic fractional PDE and homogeneous systems of time fractional heat equations
which is a generalization to the problem of thermal effects on fluid flow and also
the problem of the effect of a uniform overburden on the passage of a thermal wave
and the temperatures in the underlying rock. Constructive examples are also
provided.
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Pemenue cucreM (ppakiMOHHBIX YaCTUYHBIX AU epeHIHATbHbIX
YPaBHeHHUI1 B OTHOLLIEHMH JIBYX H3MepHUTeIbLHBIX NMpeodpa3oBanuii Jlanaca
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PE3IOME

B sr1oit paboTe aBTOpHI BHEIPWIM IByMepHOe mHpeoOpa3oBanme Jlammaca mms
pelIeHrsT HEOJIHOPOAHBIX cyObammncTudeckux ApoOHeix PDE u omHOpOAHBIX cHCTeM
YpaBHEHHI BpEMEHH JpOOHOTO TeIuia, KOTOpOe SBIsAETCS 0000mEeHneM MpoOIeMbl
TEIUTOBBIX 3()()EKTOB HA MOTOK KHMIKOCTH, W TAKKE MPOOJIEMbI  BIIMSHUS PABHOMEPHBIN
BCKPBILIX MPH MPOXOXKIACHUH TEIJIOBOM BOJHBI U TEMIIEPATYPHI B HIDKEJICKAIICH TOPOIaXx.
Taxoke mpeacTaBIeHbl KOHCTPYKTUBHBIC TIPUMEPBI.

KoueBsbie cioBa: /[poOHbIe ypaBHEHHS B YaCTHBIX IPOW3BOJHBIX, IPOOHBIE YpaBHEHUS

mudoysun,  aByxmepHoe — mpeoOpasoBaHue  Jlamaca,  cucTeMbl  ypaBHEHHH
TEILIONPOBOAHOCTH.
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